

Preventing Scaling of Successful Attacks: A Cross-Layer Security Architecture for Resource-Constrained Platforms

BalkanCryptSec 2014 Istanbul, October 16, 2014

Supported by:

Federal Ministry of Education and Research

<u>Christian T. Zenger</u>, Abhijit Ambekar, Fredrik Winzer, Thomas Pöppelmann, Hans D. Schotten, Christof Paar

Outline

- Motivation
- Physical Layer Security (PHYSEC)
- Experimental Results
- PHYSEC meets asymmetric Cryptography

Motivation

• How to establish secret keys into tiny IoT-devices?

- Without user interfaces
- Under resource- and energy constraints (due to hardware limitations and battery lifetime)

RUR

Key Distribution and Management

• Symmetric cryptography

Motivation:

 Pre-shared keys entails inflexible key distribution and management

- Asymmetric cryptography

 Dynamic key establishment is very
 .
 - energy consuming

Wireless Channel as Key Variable

- Alice and Bob measure a superposition of different multipath propagations.
- Wireless channel is **easy to estimate**, e.g. by computing the channel impulse response (CIR).
- But the wireless channel is **hard to predict**, especially in presence of movement.

Wireless Channel as Key Variable

- Alice and Bob measure a superposition of different multipath propagations.
- Wireless channel is **easy to estimate**, e.g. by computing the channel impulse response (CIR).
- But the wireless channel is **hard to predict**, especially in presence of movement.

Channel Reciprocity

Channel Reciprocity

- Multipath propagation is **reciprocal**.
- Wireless channel varies over time due to movement.
- Channel could be seen as static within the coherence time.
- The coherence time depends on the velocity within the channel, e.g., for a velocity of 2 m/s it is 63.5 ms.

Channel Diversity

- Multipath propagation varies in space.
- Receiver at different positions estimate different channels.
- The channel decorrelates over the coherence distance $\lambda/2$.
- e.g., for a carrier frequency of 2.4 GHz $\lambda/2 = 6.25$ cm.

Channel Diversity

- Multipath propagation varies in space.
- Receiver at different positions estimate different channels.
- The channel decorrelates over the coherence distance $\lambda/2$.
- e.g., for a carrier frequency of 2.4 GHz $\lambda/2 = 6.25$ cm.

PHYSEC Architecture **RU**B Channel Channel Estimation Estimation Channel profile _____ **Pre-Processing Pre-Processing** Enhanced channel profile Quantization Quantization Preliminary key ____ Information Entropy Information Reconciliation Estimation Reconciliation

----'

Privacy Amplification Synchronized key

Secure key

Privacy

Amplification

Prototype Platforms

Alice & Eve: Cisco Linksys WRT54gl
 – CPU BCM5352 @ 200 MHz
 – BCM2050 radio chip

- Bob: Wi-Fi DipCortex by Soldar Splash
 - ARM Cortex M3 @ 48 MHz
 - CC3000 radio chip

Experimental Setups

Experimental Setups

Results

		Without Kalman filter		With Kalman filter		
	Quantization schemes	BCH(n,k,d)	(#Samples)	BCH(n,k,d)	(#Samples)	
Stationary setup	Ambekar et al.[3]	(63,7,31)	7334	(63,7,31)	1572	
	Jana et al.(SB)[31]	(63,18,21)	2200	(63,45,7)	512	
	Jana et al.(MB)[31]	(63,7,31)	3143	(63,7,31)	1100	
	Tope et al.[47]	(63,7,31)	5500	(63,18,21)	2445	
	Aono et al.[5]	(63,7,31)	11000	(63,36,11)	2200	
	Mathur et al.[33]	(63,45,7)	11000	(63,45,7)	22000	
Random motion	Ambekar et al.[3]	(63,10,27)	656	(63,7,31)	2200	
	Jana et al.(SB)[31]	(63,45,7)	422	(63,18,21)	2370	
	Jana et al.(MB)[31]	(63,10,27)	670	(63,7,31)	4400	
	Tope et al.[47]	(63,18,21)	1184	(63,7,31)	7700	
	Aono et al.[5]	(63,36,11)	717	(63,7,31)	4400	
	Mathur et al.[33]	(63,45,7)	7700	-	-	
Cyclic motion	Ambekar et al.[3]	(63,10,27)	642	(63,7,31)	1340	
	Jana et al.(SB)[31]	(63,45,7)	347	(63,36,11)	642	
	Jana et al.(MB)[31]	(63,10,27)	604	(63,7,31)	1063	
	Tope et al.[47]	(63,18,21)	1184	(63,7,31)	3080	
	Aono et al.[5]	(63,30,13)	550	(63,10,27)	1467	
	Mathur et al.[33]	(63,45,7)	5134	(63,45,7)	3423	

Results

		Without Kalman filter		With Kalman filter		
	Quantization schemes	BCH(n,k,d)	(#Samples)	BCH(n,k,d)	(#Samples)	
Stationary setup	Ambekar et al.[3]	(63,7,31)	7334	(63,7,31)	1572	
	Jana et al.(SB)[31]	(63,18,21)	2200	(63,45,7)	512	
	Jana et al.(MB)[31]	(63,7,31)	³¹⁴³ 27 Mi	(63,7,31)	¹¹⁰⁰ • Min	
	Tope et al.[47]	(63,7,31)	5500 37	(63,18,21)	2445 9 141111 .	
	Aono et al.[5]	(63,7,31)	11000	(63,36,11)	2200	
	Mathur et al.[33]	(63,45,7)	11000	(63,45,7)	22000	
Random motion	Ambekar et al.[3]	(63,10,27)	656	(63,7,31)	2200	
	Jana et al.(SB)[31]	(63,45,7)	422	(63,18,21)	2370	
	Jana et al.(MB)[31]	(63,10,27)	070	(63,7,31)	4400	
	Tope et al.[47]	(63,18,21)	1184 7 IVIII	• (63,7,31)	7700 40 Min.	
	Aono et al.[5]	(63,36,11)	717	(63,7,31)	4400	
	Mathur et al.[33]	(63,45,7)	7700	-	-	
Cyclic motion	Ambekar et al.[3]	(63,10,27)	642	(63,7,31)	1340	
	Jana et al.(SB)[31]	(63,45,7)	347	(63,36,11)	642	
	Jana et al.(MB)[31]	(63,10,27)	604	(63,7,31)	1063	
	Tope et al.[47]	(63,18,21)	1184 0 Min .	(63,7,31)	3080 II Min.	
	Aono et al.[5]	(63,30,13)	550	(63,10,27)	1467	
	Mathur et al.[33]	(63,45,7)	5134	(63,45,7)	3423	

Results & Intermediate Conclusion

- The key generation time mainly depends on setup:
 Very best case: 128 bit key within 6 minutes
 - Worst case: 128 bit key after 8 hours
- Key generation is too time intensive for time sensitive systems (or impatient users)
- Idea:
 - Hybrid security architecture!

Two Stage Hybrid Approach

- **Stage I:** performing a short-term authentication using asymmetric crypto (e.g., ECC sect131r1)
 - Energy efficient (cubic complexity)

- quickly establishment (high usability)

Two Stage Hybrid Approach

- **Stage 2:** The short-term key is then amplified into a long-term (and secure) symmetric key using PHYSEC
 - By passively salvaging channel profiles the system provides PFS highly energy efficient

Two Stage Hybrid Approach

- 1. Usable Security: applicable for time-sensitive systems (or impatient users)
- 2. No scaling of attacks in time and space:
 - Perfect Forward Secrecy due to repeatedly PHYSEC-key generation
 - Key diversity due to channel charateristics
- Energy efficient due to passively salvaging channel profiles -> IoT-capable

Conclusion

- Hybrid security architecture
 - Using asymmetric crypto to quickly establish an ephemeral short key (not long-term secure)
 - Which is then transformed into a long-term symmetric key using PHYSEC
- Prototype implementation
- Experimental security analysis and performance evaluation of different schemes [3,5,31,33,47]

Many thanks for your attention! Questions?

... or maybe later: christian.zenger@rub.de

Lehrstuhl für Embedded Security, Prof. Dr.-Ing. C. Paar

PROPHYLAXE

Providing Physical Layer Security for the Internet of Things (PROPHYLAXE) is a strategic research project supported by the German Ministry of Education and Research. The project includes a diverse team of IT-security scientists, electrical and computer engineers and communication engineers from HGI, Fraunhofer HHI, TU-Dresden, TU-Kaiserslautern, ESCRYPT, and the BOSCH Group.

Results

• Pass rates of several NIST statistical tests for preliminary key material:

	And	Jana	Jana	100e	Aono	Math
# Blocks	122	37	122	30	48	1
Frequency	0.77444	0.62162	0.03279	0.73333	0.87500	1.00000
Block Frequency	0.83459	0.94595	0.00820	0.86667	0.91667	1.00000
Cum. Sums (fwd)	0.76692	0.70270	0.01639	0.73333	0.91667	1.00000
$\frac{S}{S}$ Cum. Sums (rev)	0.78195	0.70270	0.03279	0.73333	0.91667	1.00000
² / ₁ Runs	0.71429	0.18919	0.00000	0.43333	0.41667	1.00000
. Engest Run	0.74436	0.45946	0.05738	0.63333	0.79167	1.00000
·∰ FFT	0.82707	0.89189	0.94262	1.00000	0.97917	1.00000
🛱 App. Entropy	0.91729	1.00000	1.00000	1.00000	1.00000	1.00000
Serial (1)	0.65414	0.94595	0.48361	0.73333	0.93750	1.00000
Serial (2)	0.78947	0.97297	0.67213	0.83333	0.97917	1.00000
Linear Complexity	0.78195	0.91892	0.94262	0.93333	0.95833	0.00000

⁴aretal (3) ³¹al (