

Timed-Release Secret Sharing Schemes with Information Theoretic Security

Yohei Watanabe and Junji Shikata

Yokohama National University, Japan

 $f(x) = x^{2} + ax + BalkanCryptSec 2014$

f(x) = g modp

Fr. .

JC:

SC

Secret Sharing Scheme and Timed-Release Functionality

Secret sharing (SS) scheme [Sha79,Bla79] is an important primitive.

- Cryptographic functionality associated with "time" is useful.
 - Concept of "time" is inseparable from our lives.
 - Such an well-known functionality is: Timed-Release Functionality.

Secret Sharing Scheme and Timed-Release Functionality

- Secret sharing (SS) scheme [Sha79,Bla79] is an important primitive.
- Cryptographic functionality associated with "time" is useful.
 - Concept of "time" is inseparable from our lives.
 - Such an well-known functionality is: Timed-Release Functionality.

"Can we realize a secret sharing scheme

with timed-release functionality?"

YNU

We focus on *Timed-Release Secret Sharing Schemes*.

Secret Sharing Scheme and Timed-Release Functionality

Secret sharing (SS) scheme [Sha79,Bla79] is an important primitive.

YNU

- Cryptographic functionality associated with "time" is useful.
 - Concept of "time" is inseparable from our lives.
 - Such an well-known functionality is: Timed-Release Functionality.

"Can we realize a secret sharing scheme with timed-release functionality?"

• We focus on *Timed-Release Secret Sharing Schemes*.

Related Works

- > Timed-Release Computational Secret Sharing Scheme [WS14]
 - Presented at ProvSec 2014 last week.

Security

Computational Security

Underlying main theory: Complexity theory.
Based on computational assumption.

The adversary has

polynomial-time computational power.

Unconditional Security (Information-Theoretic Security)

>Underlying main theories:

Information theory and Probability theory.≻Based on some assumption,

but no computational assumption is required. The adversary has infinite computational power.

The possibility that

Computational Security

some computational assumptions are broken.

polynomial-time computational power.

Development of Algorithms

Realization of Quantum Computer

Unconditional Security (Information-Theoretic Security)

>Underlying main theories:

Information theory and Probability theory.≻Based on some assumption,

but no computational assumption is required. The adversary has infinite computational power.

Shannon Entropy

• Shannon entropy $H(\cdot)$

Measure of the uncertainty of random variable.

$$H(X) \coloneqq -\sum_{x \in \mathcal{X}} \Pr(X = x) \log \Pr(X = x)$$
,

where X is a random variable which takes a value on a set X.

Shannon Entropy

• Shannon entropy $H(\cdot)$

Measure of the uncertainty of random variable.

$$H(X) \coloneqq -\sum_{x \in \mathcal{X}} \Pr(X = x) \log \Pr(X = x)$$
,

where X is a random variable which takes a value on a set X.

• Conditional Entropy $H(\cdot | \cdot)$.

$$H(X | Y) \coloneqq \sum_{y \in \mathcal{Y}} \Pr(Y = y) H(X | Y = y).$$

(k,n)-threshold Secret Sharing ((k,n)-SS)

(k,n)-threshold Secret Sharing ((k,n)-SS)

(k,n)-threshold Secret Sharing ((k,n)-SS)

Timed-Release Cryptography

Goal: securely send certain information into the future.

Example: Timed-Release Public-Key Encryption (TR-PKE) [RSW96]

Timed-Release Cryptography

Goal: securely send certain information into the future.

Example: Timed-Release Public-Key Encryption (TR-PKE) [RSW96]

Timed-Release Cryptography

Goal: securely send certain information into the future.

Example: Timed-Release Public-Key Encryption (TR-PKE) [RSW96] Time goes by.

Timed-Release Cryptography

Goal: securely send certain information into the future.

Example: Timed-Release Public-Key Encryption (TR-PKE) [RSW96] Time goes by.

Timed-Release Cryptography

Goal: securely send certain information into the future.

Example: Timed-Release Public-Key Encryption (TR-PKE) [RSW96] Time goes by

Our Proposal

Two kinds of Timed-Release Secret Sharing (TR-SS) Schemes

• (k, n)-TR-SS: Realize reconstruction with timed-release functionality.

- Formalize a model and security notions.
- Derive lower bounds on sizes of shares, time-signals and secret keys.
- Propose an optimal direct construction in the sense that it meets equality in the above every bound.

• (k_1, k_2, n) -TR-SS: Realize timed-release functionality and secret sharing functionality *simultaneously*.

- Formalize a model and security notions.
- Derive lower bounds on sizes of shares, time-signals and secret keys.
- Show a naïve construction is not optimal.
- Propose an optimal direct (but restricted) construction.

(k,n)-Timed-Release Secret Sharing ((k,n)-TR-SS)

TS

(k,n)-Timed-Release Secret Sharing ((k,n)-TR-SS)

(k,n)-Timed-Release Secret Sharing ((k,n)-TR-SS)

Entities.

A dealer **D**, *n* participants $\mathcal{P} \coloneqq \{P_1, \dots P_n\}$, a time-server **TS**, and a trusted authority **TA**.

Phases.

Initialize, Share, Extract and Reconstruct.

<u>Spaces.</u>

S: a set of secrets;

 $S\mathcal{K}$: a set of secret keys;

 $\mathcal{T} \coloneqq \{1, 2, \dots, \tau\}$: a set of time;

 \mathcal{U} : a set of shares, where $\mathcal{U} \coloneqq \bigcup_{i=1}^{n} \mathcal{U}_{i}$ and $\mathcal{U}_{i} \coloneqq \bigcup_{t=1}^{\tau} \mathcal{U}_{i}^{(t)}$;

 $\mathcal{T}I$: a set of time-signals, where $\mathcal{T}I \coloneqq \bigcup_{t=1}^{\tau} \mathcal{T}I^{(t)}$.

- 1. Initialize.
 - **1.** TA generates a secret key $sk \in S\mathcal{K}$ for TS and D.
 - 2. TA distributes *sk* to TS and D via secure channels.
 - **3.** TA deletes sk from his memory.

- 2. <u>Share.</u>
 - **1.** D randomly selects a secret $s \in S$ and chooses k and n.
 - **2. D** specifies future time $T \in \mathcal{T}$, and computes *n* shares $u_1^{(T)}, \ldots, u_n^{(T)}$.
 - **3. D** sends $(u_i^{(T)}, T)$ to P_i via a secure channel (i = 1, 2, ..., n).

3. Extract.

- **1**. At each time $t \in \mathcal{T}$, **TS** generates a time-signal $ts^{(t)} \in \mathcal{TI}^{(t)}$ by using his secret key sk.
- **2. TS** broadcasts $ts^{(t)}$.

For simplicity, we assume $ts^{(t)}$ is deterministically computed by t and sk.

4. <u>Reconstruct.</u>

At the specified time *T*, any set of participants $A \coloneqq \{P_{i_1}, \dots, P_{i_j}\}$ $(k \le j \le n)$ can reconstruct *s* from their shares $u_{i_1}^{(T)}, \dots, u_{i_j}^{(T)}$ and a time-signal $ts^{(T)}$ at the specified time *T*.

(k,n)-TR-SS: Security

We consider two kinds of security.

- (i) Traditional secret sharing security.
- (ii) Timed-release security.

Formally, a (k,n)-TR-SS scheme is secure if the following conditions are satisfied.

(i) For any
$$F \subset \mathcal{P}$$
 s.t. $1 \leq |F| \leq k - 1$ and any $T \in \mathcal{T}$, it holds that
 $H\left(S \mid U_{F}^{(T)}, TI^{(1)}, ..., TI^{(\tau)}\right) = H(S).$
(ii) For any $A \subset \mathcal{P}$ s.t. $k \leq |A| \leq n$ and any $T \in \mathcal{T}$, it holds that
 $H\left(S \mid U_{A}^{(T)}, TI^{(1)}, ..., TI^{(T-1)}, TI^{(T+1)}, ..., TI^{(\tau)}\right) = H(S).$

(k,n)-TR-SS: Tight Lower Bounds

Lower bounds on sizes of shares, time-signals and secret keys required for a secure (k,n)-TR-SS scheme as follows.

<u>Theorem.</u>

For any $i \in \{1, 2, ..., n\}$ and for any $T \in \mathcal{T}$, we have (i) $H\left(U_{i}^{(T)}\right) \geq H(S)$, (ii) $H(TI^{(T)}) \geq H(S)$, (iii) $H(SK) \geq \tau H(S)$.

A construction of a secure (k,n)-TR-SS scheme is said to be optimal if it meets equality in every bound of (i)-(iii) in the above theorem.

(k,n)-TR-SS: Tight Lower Bounds

Lower bounds on sizes of shares, time-signals and secret keys required for a secure (k,n)-TR-SS scheme as follows.

<u>Theorem.</u>

For any $i \in \{1, 2, ..., n\}$ and for any $T \in \mathcal{T}$, we have

(i) $H\left(U_{i}^{(T)}\right) \geq H(S),$ (ii) $H(TI^{(T)}) \geq H(S),$ (iii) $H(SK) \geq \tau H(S).$

Timed-release property can be realized without any additional redundancy in the share size.

A construction of a secure (k,n)-TR-SS scheme is said to be optimal if it meets equality in every bound of (i)-(iii) in the above theorem.

(k,n)-TR-SS: Optimal Construction

ΥΝ

1. Initialize.

Let q be a prime power, where $q > \max(n, \tau)$.

Let \mathbf{F}_q be a finite field with q elements.

- **1.** TA chooses τ numbers $r^{(j)}$ $(j = 1, ..., \tau)$ from \mathbf{F}_q uniformly at random.
- **2.** TA sends $sk \coloneqq (r^{(1)}, \dots, r^{(\tau)})$ to TS and D, respectively.

(k,n)-TR-SS: Optimal Construction

ΥΝ

- 2. <u>Share.</u>
 - **1.** D randomly selects a secret $s \in \mathbf{F}_q$ and chooses k and n.
 - **2. D** specifies future time $T \in \mathcal{T}$.
 - **3.** D randomly chooses $f(x) \coloneqq c^{(T)} + \sum_{i=1}^{k-1} a_i x^i$ over \mathbf{F}_q , where $c^{(T)} \coloneqq s + r^{(T)}$ and each a_i is chosen from \mathbf{F}_q uniformly at random.
 - **4.** D computes $u_i^{(T)} \coloneqq f(P_i)$ and sends $\left(u_i^{(T)}, T\right)$ to P_i via a secure channel (i = 1, 2, ..., n).

(k,n)-TR-SS: Optimal Construction

YNU

3. Extract.

At each time $t \in T$, **TS** broadcasts *t*-th key $r^{(t)}$ as a time-signal at time *t*.

(k,n)-TR-SS: Optimal Construction

4. <u>Reconstruct.</u>

1. A set of at least *k* participants $A \coloneqq \{P_{i_1}, \dots, P_{i_j}\}$ can compute $c^{(T)}$ by Lagrange interpolation from their *k* shares:

$$c^{(T)} = \sum_{j=1}^{k} \left(\prod_{l \neq j} \frac{P_{i_j}}{P_{i_j} - P_{i_l}} \right) f\left(P_{i_j}\right).$$

2. After receiving $ts^{(T)} = r^{(T)}$, they can compute $s = c^{(T)} - r^{(T)}$.

(k,n)-TR-SS: Optimal Construction

4. Reconstruct.

1. A set of at least *k* participants $A \coloneqq \{P_{i_1}, \dots, P_{i_j}\}$ can compute $c^{(T)}$ by Lagrange interpolation from their *k* shares:

$$c^{(T)} = \sum_{j=1}^{k} \left(\prod_{l \neq j} \frac{P_{i_j}}{P_{i_j} - P_{i_l}} \right) f\left(P_{i_j}\right).$$

2. After receiving $ts^{(T)} = r^{(T)}$, they can compute $s = c^{(T)} - r^{(T)}$.

<u>Theorem.</u>

 P_{i_i}

The resulting (k,n)-TR-SS scheme by this construction is *secure* and *optimal*.

Entities.

A dealer **D**, *n* participants $\mathcal{P} \coloneqq \{P_1, \dots, P_n\}$, a time-server **TS**, and a trusted authority **TA**.

Phases.

Initialize, Share, Extract, Reconstruct with time-signals, and Reconstruct without time-signals.

<u>Spaces.</u>

S: a set of secrets;

 $S\mathcal{K}$: a set of secret keys;

 $\mathcal{T} \coloneqq \{1, 2, \dots, \tau\}$: a set of time;

 \mathcal{U} : a set of shares, where $\mathcal{U} \coloneqq \bigcup_{i=1}^{n} \mathcal{U}_{i}$ and $\mathcal{U}_{i} \coloneqq \bigcup_{t=1}^{\tau} \mathcal{U}_{i}^{(t)}$;

 $\mathcal{T}I$: a set of time-signals, where $\mathcal{T}I \coloneqq \bigcup_{t=1}^{\tau} \mathcal{T}I^{(t)}$.

- 1. <u>Initialize.</u> (the same procedure as that in (k,n)-TR-SS)
 - **1.** TA generates a secret key $sk \in S\mathcal{K}$ for **TS** and **D**.
 - 2. TA distributes *sk* to TS and D via secure channels.
 - **3.** TA deletes sk from his memory.

- 2. <u>Share.</u>
 - **1. D** randomly selects a secret $s \in S$ and chooses k_1 , k_2 and n.
 - **2.** D specifies future time $T \in \mathcal{T}$, and computes *n* shares $u_1^{(T)}, \dots, u_n^{(T)}$.
 - **3. D** sends $(u_i^{(T)}, T)$ to P_i via a secure channel (i = 1, 2, ..., n).

- 3. Extract. (the same procedure as that in (k,n)-TR-SS)
 - **1**. At each time $t \in \mathcal{T}$, **TS** generates a time-signal $ts^{(t)} \in \mathcal{TI}^{(t)}$ by using his secret key sk.
 - **2. TS** broadcasts $ts^{(t)}$.

For simplicity, we assume $ts^{(t)}$ is deterministically computed by t and sk.

4. Reconstruct with time-signals.

At the specified time *T*, any set of participants $A \coloneqq \{P_{i_1}, \dots, P_{i_j}\}$ $(k_1 \le j < k_2)$ can reconstruct *s* from their shares $u_{i_1}^{(T)}, \dots, u_{i_j}^{(T)}$ and a time-signal $ts^{(T)}$ at the specified time *T*.

5. <u>Reconstruct without time-signals.</u>

At anytime, any set of participants $A \coloneqq \{P_{i_1}, \dots, P_{i_j}\}$ $(k_2 \le j \le n)$ can reconstruct *s* from **only** their shares $u_{i_1}^{(T)}, \dots, u_{i_j}^{(T)}$.

(k₁,k₂,n)-TR-SS: Security

We consider two kinds of security.

- (i) Traditional secret sharing security.
- (ii) Timed-release security.

Formally, a (k_1, k_2, n) -TR-SS scheme is secure if the following conditions are satisfied.

(i) For any
$$F \subset \mathcal{P}$$
 s.t. $1 \leq |F| \leq k_1 - 1$ and any $T \in \mathcal{T}$, it holds that
 $H\left(S \mid U_F^{(T)}, TI^{(1)}, \dots, TI^{(\tau)}\right) = H(S).$
(ii) For any $\widehat{F} \subset \mathcal{P}$ s.t. $k_1 \leq |\widehat{F}| < k_2$ and any $T \in \mathcal{T}$, it holds that
 $H\left(S \mid U_{\widehat{F}}^{(T)}, TI^{(1)}, \dots, TI^{(T-1)}, TI^{(T+1)}, \dots, TI^{(\tau)}\right) = H(S).$

(k₁,k₂,n)-TR-SS: Tight Lower Bounds

Lower bounds on sizes of shares, time-signals and secret keys required for a secure (k_1, k_2, n) -TR-SS scheme as follows.

<u>Theorem.</u>

For any $i \in \{1, 2, ..., n\}$ and for any $T \in \mathcal{T}$, we have (i) $H\left(U_i^{(T)}\right) \ge H(S)$. If (i) holds with equality (i.e. $H\left(U_i^{(T)}\right) = H(S)$ for any i and T), we have (ii) $H(TI^{(T)}) \ge (k_2 - k_1)H(S)$, (iii) $H(SK) \ge \tau(k_2 - k_1)H(S)$.

A construction of a secure (k_1, k_2, n) -TR-SS scheme is said to be optimal if it meets equality in every bound of (i)-(iii) in the above theorem.

We can realize a secure (k_1, k_2, n) -TR-SS scheme by combining the following two schemes.

- > A secure (k_1, n) -TR-SS scheme (the first scheme)
- > A secure (k_2,n) -SS scheme (e.g. Shamir's scheme)

However, the resulting scheme is NOT optimal.

✓ The share size is twice as large as the underlying secret size.

(k₁,k₂,n)-TR-SS: Constructing Idea

To achieve an optimal construction, we use the technique in [JS13]:

In the phase Share,

- D computes public parameters, and
- > the public parameters are broadcasted to participants,
- > or else stored on a publicly accessible authenticated bulletin board.

(k₁,k₂,n)-TR-SS: Optimal Construction

1. Initialize.

Let q be a prime power, where $q > \max(n, \tau)$.

Let \mathbf{F}_q be a finite field with q elements.

- **1.** TA chooses ℓ , which is the maximum difference between k_2 and k_1 .
- **2.** TA chooses $\ell \cdot \tau$ numbers $r_i^{(t)}$ $(i = 1, ..., \ell, t = 1, ..., \tau)$ from \mathbf{F}_q uniformly at random.

(k₁,k₂,n)-TR-SS: Optimal Construction

1. Initialize.

Let q be a prime power, where $q > \max(n, \tau)$.

Let \mathbf{F}_q be a finite field with q elements.

- **1.** TA chooses ℓ , which is the maximum difference between k_2 and k_1 .
- **2.** TA chooses $\ell \cdot \tau$ numbers $r_i^{(t)}$ $(i = 1, ..., \ell, t = 1, ..., \tau)$ from \mathbf{F}_q uniformly at random.

3. TA sends
$$sk \coloneqq \left\{ \left(r_1^{(t)}, \dots, r_\ell^{(t)} \right) \right\}_{1 \le t \le \tau}$$
 to **TS** and **D**, respectively.

Note.

This construction is optimal but **restricted**, since **D** will be only allowed to choose k_1 and k_2 s.t. $k_2 - k_1 \le \ell$ in the phase Share.

Π

TA

- 2. <u>Share.</u>
 - **1. D** randomly selects a secret $s \in \mathbf{F}_q$ and chooses k_1 , k_2 and n.
 - **2. D** specifies future time $T \in \mathcal{T}$.
 - 3. D randomly chooses

$$f(x) \coloneqq s + a_1 x + \dots + a_{k_1 - 1} x^{k_1 - 1} + a_{k_1} x^{k_1} + \dots + a_{k_2 - 1} x^{k_2 - 1},$$

over \mathbf{F}_q , where each a_i is chosen from \mathbf{F}_q uniformly at random.

- **4. D** computes $u_i^{(T)} \coloneqq f(P_i)$ and $p_i^{(T)} \coloneqq a_{k_1-1+i} + r_i^{(T)}$ $(i = 1, ..., k_2 k_1)$.
- **5. D** sends $(u_i^{(T)}, T)$ to P_i via a secure channel (i = 1, 2, ..., n) and disclose $p_1^{(T)}, ..., p_{k_2-k_1}^{(T)}$.

(k₁,k₂,n)-TR-SS: Optimal Construction

2. <u>Share.</u>

- **1. D** randomly selects a secret $s \in \mathbf{F}_q$ and chooses k_1 , k_2 and n.
- **2. D** specifies future time $T \in \mathcal{T}$.
- **3. D** randomly chooses

$$f(x) \coloneqq s + a_1 x + \dots + a_{k_1 - 1} x^{k_1 - 1} + a_{k_1} x^{k_1} + \dots + a_{k_2 - 1} x^{k_2 - 1}$$

over \mathbf{F}_q , where each a_i is chosen from \mathbf{F}_q uniformly at random.

4. D computes $u_i^{(T)} \coloneqq f(P_i)$ and $p_i^{(T)} \coloneqq a_{k_1-1+i} + r_i^{(T)}$ $(i = 1, ..., k_2 - k_1)$.

Mask and disclose

5. D sends $(u_i^{(T)}, T)$ to P_i via a secure channel (i = 1, 2, ..., n) and disclose $p_1^{(T)}, ..., p_{k_2-k_1}^{(T)}$.

3. Extract.

At each time $t \in T$, **TS** broadcasts *t*-th key $(r_1^{(t)}, ..., r_{\ell}^{(t)})$ as a time-signal at time *t*.

4. Reconstruct with time-signals.

Suppose that all participants receive $ts^{(T)} = (r_1^{(T)}, ..., r_\ell^{(T)})$. Let $A \coloneqq \{P_{i_1}, ..., P_{i_{k_1}}\}$ be a set of any k_1 participants. 1. Each $P_{i_j} \in A$ computes $a_{k_1-1+k} = p_k^{(T)} - r_k^{(T)}$ $(k = 1, ..., k_2 - k_1)$ and constructs $g(x) \coloneqq a_{k_1}x^{k_1} + \dots + a_{k_2-1}x^{k_2-1}$. 2. Each $P_{i_j} \in A$ computes $h(P_{i_j}) \coloneqq f(P_{i_j}) - g(P_{i_j})$ s t

2. Each
$$P_{i_j} \in A$$
 computes $h(P_{i_j}) \coloneqq f(P_{i_j}) - g(P_{i_j})$ s.t.
$$h(x) \coloneqq s + a_1 x + \dots + a_{k_1 - 1} x^{k_1 - 1}.$$

3. A computes s by Lagrange interpolation from $h(P_{i_1}), ..., h(P_{i_{k_1}})$:

$$s = \sum_{j=1}^{k_1} \left(\prod_{l \neq j} \frac{P_{i_j}}{P_{i_j} - P_{i_l}} \right) h\left(P_{i_j}\right).$$

- 5. <u>Reconstruct without time-signals.</u>
 - 1. Any set of at least k_2 participants $\hat{A} \coloneqq \{P_{i_1}, \dots, P_{i_{k_2}}\}$ can compute *s* by Lagrange interpolation from $f(P_{i_1}), \dots, f(P_{i_{k_2}})$:

$$s = \sum_{j=1}^{k_2} \left(\prod_{l \neq j} \frac{P_{i_j}}{P_{i_j} - P_{i_l}} \right) f\left(P_{i_j}\right).$$

Conclusion

Proposed Timed-Release Secret Sharing (TR-SS) schemes.

- One is a secret sharing scheme with timed-release functionality.
- Another one is a hybrid scheme.
- By using TR-SS, we can add timed-release functionality to applications of secret sharing schemes.
 - Information-theoretically secure key escrow with limited time span.
 - Information-theoretically secure timed-release encryption.