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Related Works 

 Timed-Release Computational Secret Sharing Scheme [WS14] 

 Presented at ProvSec 2014 last week. 
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Our Proposal 

Two kinds of Timed-Release Secret Sharing (TR-SS) Schemes 

 (𝒌, 𝒏)-TR-SS: Realize reconstruction with timed-release functionality. 

 Formalize a model and security notions. 

 Derive lower bounds on sizes of shares, time-signals and secret keys. 

 Propose an optimal direct construction in the sense that it meets 

equality in the above every bound. 

 (𝒌𝟏, 𝒌𝟐, 𝒏)-TR-SS: Realize timed-release functionality and secret 

sharing functionality simultaneously. 

 Formalize a model and security notions. 

 Derive lower bounds on sizes of shares, time-signals and secret keys. 

 Show a naïve construction is not optimal. 

 Propose an optimal direct (but restricted) construction. 
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(k,n)-TR-SS: Model 

Entities. 

A dealer D, 𝑛 participants P ≔ {𝑷𝟏, … 𝑷𝒏}, a time-server TS, and a trusted 

authority TA. 

Phases. 

Initialize, Share, Extract  and  Reconstruct.  

Spaces.  

S : a set of secrets; 

SK : a set of secret keys; 

T ≔ {1,2, … , 𝜏} : a set of time; 

U : a set of shares, where U ≔  U𝑖
𝑛
𝑖=1  and U𝑖 ≔  U𝑖

𝑡𝜏
𝑡=1 ; 

TI : a set of time-signals, where TI ≔  TI
𝑡𝜏

𝑡=1 . 
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1. Initialize.  
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2. TA distributes 𝑠𝑘 to TS and D via secure channels. 

3. TA deletes 𝑠𝑘 from his memory. 
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3. Extract. 
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For simplicity, we assume 𝑡𝑠 𝑡  is deterministically computed by 𝑡 and 𝑠𝑘. 
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4. Reconstruct. 
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(k,n)-TR-SS: Security 

We consider two kinds of security. 

(i) Traditional secret sharing security. 

(ii) Timed-release security. 

Formally, a (k,n)-TR-SS scheme is secure  if the following conditions 

are satisfied. 

(i) For any 𝑭 ⊂ P  s.t. 𝟏 ≤ 𝑭 ≤ 𝒌 − 𝟏 and any 𝑻 ∈ T,  it holds that 

𝑯 𝑺 𝑼𝑭
𝑻

, 𝑻𝑰 𝟏 , … , 𝑻𝑰 𝝉 = 𝑯 𝑺 . 

(ii) For any 𝑨 ⊂ P  s.t. 𝐤 ≤ 𝑨 ≤ 𝒏 and any 𝑻 ∈ T,  it holds that 

𝑯 𝑺 𝑼𝑨
𝑻

, 𝑻𝑰 𝟏 , … , 𝑻𝑰 𝑻−𝟏 , 𝑻𝑰 𝑻+𝟏 , … , 𝑻𝑰 𝝉 = 𝑯 𝑺 . 

 

 

 

 



(k,n)-TR-SS: Tight Lower Bounds 

Lower bounds on sizes of shares, time-signals and secret keys 

required for a secure (k,n)-TR-SS scheme as follows. 

Theorem. 

For any 𝒊 ∈ 𝟏, 𝟐, … , 𝒏  and for any 𝑻 ∈ T , we have 

(i)  𝑯 𝑼𝒊
𝑻

≥ 𝑯 𝑺 , 

(ii)  𝑯 𝑻𝑰 𝑻 ≥ 𝑯(𝑺), 

(iii)  𝑯 𝑺𝑲 ≥ 𝝉 𝑯(𝑺). 

 

A construction of a secure (k,n)-TR-SS scheme is said to be optimal                

if it meets equality in every bound of (i)-(iii) in the above theorem. 
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(k,n)-TR-SS: Optimal Construction 

1. Initialize.  

Let 𝒒 be a prime power, where 𝒒 > 𝐦𝐚𝐱(𝒏, 𝝉). 

Let 𝐅𝒒 be a finite field with 𝑞 elements. 

1. TA chooses 𝜏 numbers 𝑟 𝑗  (𝑗 = 1, … , 𝜏) from 𝐅𝑞 uniformly at random. 
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2. Share. 
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3. Extract. 

At each time 𝑡 ∈ T, TS broadcasts 𝑡-th key 𝑟 𝑡  as a time-signal at time 𝑡. 
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4. Reconstruct. 

1. A set of at least 𝑘 participants 𝐴 ≔ 𝑃𝑖1 , … , 𝑃𝑖𝑗  can compute 𝑐 𝑇  by 

Lagrange interpolation from their 𝑘 shares: 
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2. After receiving 𝑡𝑠 𝑇 = 𝑟 𝑇 , they can compute 𝑠 = 𝑐 𝑇 − 𝑟 𝑇 . 

(k,n)-TR-SS: Optimal Construction 

…
 

𝑷𝒊𝟏 

𝑷𝒊𝒋 

)(Tts

TS 

s



4. Reconstruct. 

1. A set of at least 𝑘 participants 𝐴 ≔ 𝑃𝑖1 , … , 𝑃𝑖𝑗  can compute 𝑐 𝑇  by 

Lagrange interpolation from their 𝑘 shares: 

𝑐 𝑇 =   
𝑃𝑖𝑗

𝑃𝑖𝑗 − 𝑃𝑖𝑙𝑙≠𝑗

𝑘

𝑗=1

𝑓 𝑃𝑖𝑗 . 

2. After receiving 𝑡𝑠 𝑇 = 𝑟 𝑇 , they can compute 𝑠 = 𝑐 𝑇 − 𝑟 𝑇 . 

(k,n)-TR-SS: Optimal Construction 

…
 

𝑷𝒊𝟏 

𝑷𝒊𝒋 

)(Tts

TS 

s

Theorem. 

The resulting (k,n)-TR-SS scheme by     

this construction is secure and optimal. 
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at the specified time. 
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… 

n 

𝑇 : specified time 
TS 

time-signal 

at time 𝑇 

Secret can be reconstructed from 

at least 𝒌𝟏 shares and the          

time-signal at the specified time 
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…
 

secret 𝒔 

share 𝒖𝟏
𝑻  

share 𝒖𝒌𝟏

𝑻  

share 𝒖𝒏
𝑻  

)(Tts

secret 𝒔 

share 𝒖𝒌𝟐

𝑻  

 𝐻 𝑆 𝑈𝐴
𝑇

, 𝑇𝐼 𝑇 = 0 

 𝐴 ⊂ P, 𝑘1 ≤ 𝐴 < 𝑘2 .   

At least 𝑘1 (but no more than 𝑘2) 

participants cannot reconstruct   

the secret without the time-signal 

at the specified time. 



𝑷𝒏 

𝑷𝒌𝟐  

𝑷𝒌𝟏  

𝑷𝟏 

D 

…
 

…
 

… 

n 

TS 

time-signal 

at time 𝑇 

No information is leaked 

from at most 𝑘1 − 1 shares 

Secret can be reconstructed from 

at least 𝒌𝟏 shares and the          

time-signal at the specified time 
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…
 

secret 𝒔 

share 𝒖𝟏
𝑻  

share 𝒖𝒌𝟏

𝑻  

share 𝒖𝒏
𝑻  

)(Tts

secret 𝒔 

share 𝒖𝒌𝟐

𝑻  

At least 𝑘1 (but no more than 𝑘2) 

participants cannot reconstruct   

the secret without the time-signal 

at the specified time. 

𝑇 : specified time 



𝑷𝒏 

𝑷𝒌𝟐  

𝑷𝒌𝟏  

𝑷𝟏 

D 

…
 

…
 

… 

n 

𝑇 : specified time 
TS 

Secret can be reconstructed 

from only at least 𝒌𝟐 shares 
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…
 

secret 𝒔 

share 𝒖𝟏
𝑻  

share 𝒖𝒌𝟏

𝑻  

share 𝒖𝒏
𝑻  

secret 𝒔 

share 𝒖𝒌𝟐

𝑻  

 𝐻 𝑆 𝑈
𝐴 

𝑇
= 0 

 𝐴 ⊂ P, 𝑘2 ≤ 𝐴 ≤ 𝑛 .   
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Entities. 

A dealer D, 𝑛 participants P ≔ {𝑷𝟏, … 𝑷𝒏}, a time-server TS, and   a 

trusted authority TA. 

Phases. 

Initialize, Share, Extract , Reconstruct with time-signals,                             

and Reconstruct without time-signals.  

Spaces.  

S : a set of secrets; 

SK : a set of secret keys; 

T ≔ {1,2, … , 𝜏} : a set of time; 

U : a set of shares, where U ≔  U𝑖
𝑛
𝑖=1  and U𝑖 ≔  U𝑖

𝑡𝜏
𝑡=1 ; 

TI : a set of time-signals, where TI ≔  TI
𝑡𝜏

𝑡=1 . 

 



TS 

D 
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1. Initialize.  (the same procedure as that in (k,n)-TR-SS) 

1. TA generates a secret key 𝑠𝑘 ∈ SK for TS and D.  

2. TA distributes 𝑠𝑘 to TS and D via secure channels. 

3. TA deletes 𝑠𝑘 from his memory. 

 

TA 

𝑠𝑘 

𝑠𝑘 

: 

Secure Channel 



D 
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2. Share. 

1. D randomly selects a secret  𝑠 ∈ S and chooses 𝑘1, 𝑘2 and 𝑛. 

2. D specifies future time 𝑇 ∈ T, and computes  𝑛 shares 

𝑢1
𝑇

, … , 𝑢𝑛
𝑇

. 

3. D sends 𝑢𝑖
𝑇

, 𝑇  to 𝑷𝒊 via a secure channel (𝑖 = 1,2, … , 𝑛). 

 
..…

 
),( )(

1 Tu T

),( )( Tu T

n
…

…
 

𝑷𝟏 

𝑷𝒏 

: 

Secure Channel 
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3. Extract. (the same procedure as that  in (k,n)-TR-SS) 

1. At each time 𝑡 ∈ T, TS generates a time-signal 𝑡𝑠 𝑡 ∈ TI
𝑡

 by 

using his secret key s𝑘. 

2. TS broadcasts 𝑡𝑠 𝑡 . 

 

)(tts

TS 

For simplicity, we assume 𝑡𝑠 𝑡  is deterministically computed by 𝑡 and 𝑠𝑘. 
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4. Reconstruct with time-signals. 

At the specified time 𝑇, any set of participants 𝐴 ≔ 𝑃𝑖1 , … , 𝑃𝑖𝑗  

𝑘1 ≤ 𝑗 < 𝑘2  can reconstruct 𝑠 from their shares 𝑢𝑖1

𝑇
, … , 𝑢𝑖𝑗

𝑇
 and              

a time-signal 𝑡𝑠 𝑇  at the specified time 𝑇. 

..…
 

)(Tts

TS 

s
𝑷𝒊𝟏 

𝑷𝒊𝒋 
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5. Reconstruct without time-signals. 

At anytime, any set of participants 𝐴 ≔ 𝑃𝑖1 , … , 𝑃𝑖𝑗  𝑘2 ≤ 𝑗 ≤ 𝑛  can 

reconstruct 𝑠 from only their shares 𝑢𝑖1

𝑇
, … , 𝑢𝑖𝑗

𝑇
. 

..…
 

s
𝑷𝒊𝟏 

𝑷𝒊𝒋 
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We consider two kinds of security. 

(i) Traditional secret sharing security. 

(ii) Timed-release security. 

Formally, a (k1,k2,n)-TR-SS scheme is secure  if the following 

conditions are satisfied. 

(i) For any 𝑭 ⊂ P  s.t. 𝟏 ≤ 𝑭 ≤ 𝒌𝟏 − 𝟏 and any 𝑻 ∈ T,  it holds that 

𝑯 𝑺 𝑼𝑭
𝑻

, 𝑻𝑰 𝟏 , … , 𝑻𝑰 𝝉 = 𝑯 𝑺 . 

(ii) For any 𝑭 ⊂ P  s.t. 𝐤𝟏 ≤ 𝑭 < 𝒌𝟐 and any 𝑻 ∈ T,  it holds that 

𝑯 𝑺 𝑼
𝑭 
𝑻

, 𝑻𝑰 𝟏 , … , 𝑻𝑰 𝑻−𝟏 , 𝑻𝑰 𝑻+𝟏 , … , 𝑻𝑰 𝝉 = 𝑯 𝑺 . 
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Lower bounds on sizes of shares, time-signals and secret keys 

required for a secure (k1,k2,n)-TR-SS scheme as follows. 

Theorem. 

For any 𝒊 ∈ 𝟏, 𝟐, … , 𝒏  and for any 𝑻 ∈ T , we have 

(i)  𝑯 𝑼𝒊
𝑻

≥ 𝑯 𝑺 . 

If (i) holds with equality (i.e. 𝑯 𝑼𝒊
𝑻

= 𝑯(𝑺) for any 𝒊 and 𝑻), we have 

(ii)  𝑯 𝑻𝑰 𝑻 ≥ (𝒌𝟐 − 𝒌𝟏)𝑯(𝑺), 

(iii)  𝑯 𝑺𝑲 ≥ 𝝉(𝒌𝟐 − 𝒌𝟏)𝑯(𝑺). 

A construction of a secure (k1,k2,n)-TR-SS scheme is said to be optimal                

if it meets equality in every bound of (i)-(iii) in the above theorem. 
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We can realize a secure (k1,k2,n)-TR-SS scheme by combining the 

following two schemes. 

 A secure (k1,n)-TR-SS scheme (the first scheme) 

 A secure (k2,n)-SS scheme (e.g. Shamir’s scheme) 

However, the resulting scheme is NOT optimal. 

 The share size is twice as large as the underlying secret size. 
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To achieve an optimal construction, we use the technique in [JS13]: 

In the phase Share,  

 D computes public parameters, and  

 the public parameters are broadcasted to participants, 

 or else stored on a publicly accessible authenticated bulletin board. 

 

 

 



TS 

D 
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1. Initialize.  

Let 𝒒 be a prime power, where 𝒒 > 𝐦𝐚𝐱(𝒏, 𝝉). 

Let 𝐅𝒒 be a finite field with 𝑞 elements. 

1. TA chooses ℓ, which is the maximum difference between 𝑘2 and 𝑘1. 

2. TA chooses ℓ ⋅ 𝜏 numbers 𝑟𝑖
𝑡

 (𝑖 = 1, … , ℓ, 𝑡 = 1, … , 𝜏) from 𝐅𝑞 

uniformly at random. 

3. TA sends 𝑠𝑘 ≔ 𝑟1
𝑡

, … , 𝑟ℓ
𝑡

1≤𝑡≤𝜏
 to TS and D, respectively. 

 

TA 

𝑠𝑘 

𝑠𝑘 

: 

Secure Channel 
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,n)-TR-SS: Optimal Construction 

1. Initialize.  

Let 𝒒 be a prime power, where 𝒒 > 𝐦𝐚𝐱(𝒏, 𝝉). 

Let 𝐅𝒒 be a finite field with 𝑞 elements. 

1. TA chooses ℓ, which is the maximum difference between 𝑘2 and 𝑘1. 

2. TA chooses ℓ ⋅ 𝜏 numbers 𝑟𝑖
𝑡

 (𝑖 = 1, … , ℓ, 𝑡 = 1, … , 𝜏) from 𝐅𝑞 

uniformly at random. 

3. TA sends 𝑠𝑘 ≔ 𝑟1
𝑡

, … , 𝑟ℓ
𝑡

1≤𝑡≤𝜏
 to TS and D, respectively. 

 

TA 

𝑠𝑘 

𝑠𝑘 

: 

Secure Channel 

Note.  

This construction is optimal but  restricted, since D will be only 

allowed to choose 𝑘1 and 𝑘2 s.t. 𝑘2 − 𝑘1 ≤ ℓ in the phase Share. 



2. Share. 

1. D randomly selects a secret  𝑠 ∈ 𝐅𝑞 and chooses 𝑘1, 𝑘2 and 𝑛. 

2. D specifies future time 𝑇 ∈ T. 

3. D randomly chooses  

𝑓 𝑥 ≔ 𝑠 + 𝑎1𝑥 + ⋯ + 𝑎𝑘1−1𝑥𝑘1−1 + 𝑎𝑘1
𝑥𝑘1 + ⋯ + 𝑎𝑘2−1𝑥𝑘2−1, 

over 𝐅𝑞, where each 𝑎𝑖 is chosen from 𝐅𝑞 uniformly at random. 

4. D computes 𝑢𝑖
𝑇

≔ 𝑓(𝑃𝑖) and 𝑝𝑖
𝑇

≔ 𝑎𝑘1−1+𝑖 + 𝑟𝑖
𝑇

 (𝑖 = 1, … , 𝑘2 − 𝑘1). 

5. D sends 𝑢𝑖
𝑇

, 𝑇  to 𝑷𝒊 via a secure channel (𝑖 = 1,2, … , 𝑛) and 

disclose 𝑝1
𝑇

, … , 𝑝𝑘2−𝑘1

𝑇
. 
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2. Share. 

1. D randomly selects a secret  𝑠 ∈ 𝐅𝑞 and chooses 𝑘1, 𝑘2 and 𝑛. 

2. D specifies future time 𝑇 ∈ T. 

3. D randomly chooses  

𝑓 𝑥 ≔ 𝑠 + 𝑎1𝑥 + ⋯ + 𝑎𝑘1−1𝑥𝑘1−1 + 𝑎𝑘1
𝑥𝑘1 + ⋯ + 𝑎𝑘2−1𝑥𝑘2−1, 

over 𝐅𝑞, where each 𝑎𝑖 is chosen from 𝐅𝑞 uniformly at random. 

4. D computes 𝑢𝑖
𝑇

≔ 𝑓(𝑃𝑖) and 𝑝𝑖
𝑇

≔ 𝑎𝑘1−1+𝑖 + 𝑟𝑖
𝑇

 (𝑖 = 1, … , 𝑘2 − 𝑘1). 

5. D sends 𝑢𝑖
𝑇

, 𝑇  to 𝑷𝒊 via a secure channel (𝑖 = 1,2, … , 𝑛) and 

disclose 𝑝1
𝑇

, … , 𝑝𝑘2−𝑘1

𝑇
. 
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Mask and disclose 



3. Extract. 

At each time 𝑡 ∈ T, TS broadcasts 𝑡-th key (𝑟1
𝑡

, … , 𝑟ℓ
𝑡

) as a time-signal 

at time 𝑡. 
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4. Reconstruct with time-signals. 

Suppose that all participants receive 𝑡𝑠 𝑇 = (𝑟1
𝑇

, … , 𝑟ℓ
𝑇

). 

Let 𝐴 ≔ 𝑃𝑖1 , … , 𝑃𝑖𝑘1
 be a set of any 𝑘1 participants. 

1. Each 𝑃𝑖𝑗 ∈ 𝐴 computes 𝑎𝑘1−1+𝑘 = 𝑝𝑘
𝑇

− 𝑟𝑘
𝑇

 (𝑘 = 1, … , 𝑘2 − 𝑘1) and 

constructs 𝑔 𝑥 ≔ 𝑎𝑘1
𝑥𝑘1 + ⋯ + 𝑎𝑘2−1𝑥𝑘2−1. 

2. Each 𝑃𝑖𝑗 ∈ 𝐴 computes ℎ 𝑃𝑖𝑗 ≔ 𝑓 𝑃𝑖𝑗 − 𝑔 𝑃𝑖𝑗  s.t. 

ℎ 𝑥 ≔ 𝑠 + 𝑎1𝑥 + ⋯ + 𝑎𝑘1−1𝑥𝑘1−1. 

3.  𝐴 computes 𝑠 by Lagrange interpolation from ℎ 𝑃𝑖1 , … , ℎ 𝑃𝑖𝑘1
 : 

𝑠 =   
𝑃𝑖𝑗

𝑃𝑖𝑗 − 𝑃𝑖𝑙𝑙≠𝑗

𝑘1

𝑗=1

ℎ 𝑃𝑖𝑗 . 
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5. Reconstruct without time-signals. 

1. Any set of at least 𝑘2 participants 𝐴 ≔ 𝑃𝑖1 , … , 𝑃𝑖𝑘2
 can compute 𝑠 

by Lagrange interpolation from 𝑓 𝑃𝑖1 , … , 𝑓 𝑃𝑖𝑘2
 : 

𝑠 =   
𝑃𝑖𝑗

𝑃𝑖𝑗 − 𝑃𝑖𝑙𝑙≠𝑗

𝑘2

𝑗=1

𝑓 𝑃𝑖𝑗 . 
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Conclusion 

 Proposed Timed-Release Secret Sharing (TR-SS) schemes. 

 One is a secret sharing scheme with timed-release functionality. 

 Another one is a hybrid scheme. 

 

 By using TR-SS, we can add timed-release functionality to 

applications of secret sharing schemes. 

 Information-theoretically secure key escrow with limited time span. 

 Information-theoretically secure timed-release encryption. 

 




