
Optimizing the placement of tap positions

Samir Hodžić
joint work with

Enes Pasalic, Samed Bajrić and Yongzhuang Wei



Filtering generator

• Linear feedback shift register (LFSR).

• Nonlinear filtering function F : GF (2)n → GF (2)m, whose
inputs are taken from Tap positions of register.

Outputs of F are keystream blocks yt = (y t1 , . . . , y
t
m).



Attacks?

Different properties of Boolean function vs different attacks:

• Algebraic degree and resiliency vs Berlekamp–Massey
synthesis algorithm and Correlation attacks.

• Algebraic immunity vs Algebraic attacks (Fast algebraic
attacks, Probabilistic algebraic attacks).

• Filter state guessing attack (FSGA).

• and others...

What about tap positions, can we use these in an attack ?



Filter state guessing attack (FSGA)

• Observe several outputs y t1 , . . . , y tc so that c × n > L, where
L is length of LFSR.

• Look at the preimage space

Sy = {x ∈ GF (2)n : F (x) = y}

• Given any output y tu there is 2n−m possibilities for input
(x tu1 , . . . , x tun ), where x tui =

∑L−1
j=0 atui ,jsj (linear equation)

• Solve linear system and check whether the solution is correct.



Regarding the preimage spaces, it may happen that

x t1j → x t2k

and preimage space reduces...

Design should prevent from finding many x t1j → x t2k , x t1u → x t2v



Generalized Filter state guessing attack (GFSGA)

Unlike FSGA, GFSGA (Y. Wei et al. ’11) utilizes the tap positions!

• The outputs y t1 , . . . , y tc may give identical equations

• Distance between the consecutive outputs is σ.

• If I0 = {i1, i2, . . . , in} is the set of tap positions, then

ri = #Ii , ri − number of repeated bits per state,

Ii = Ii−1 ∪ {I0 ∩ {i1 + iσ, i2 + iσ, . . . , in + iσ}}.



Satisfying nc − R > L, the total number of repeated equations R:

• If c ≤ k : R =
∑c−1

i=1 ri

• If c > k : R =
∑k

i=1 ri + (c − k − 1)rk , where k = ⌊ in−i1
σ

⌋.

Complexities of the attack in both cases:

T
c≤k
Comp. = 2(n−m) × 2(n−m−r1) × . . .× 2(n−m−r(c−1)) × L3.

T c>k
Comp. = 2(n−m) × . . . × 2(n−m−rk ) × 2(n−m−rk )×(c−k−1) × L3.

Problem: How to maximize TComp. for any σ?



Designer/attacker rationales

In the position of the attacker:

• Search for optimal σ that gives minimal TComp. !

Q1: What about parameters R and c in the formula

TComp. = 2(n−m)c−R × L3?

A1: For a given set of taps I0 = {i1, i2, . . . , in}, (not optimally
taken?) the step σ which results in maximal R does not imply
minimal complexity!



Our approach...

Can we calculate R in a different way? Can we get some new
information ?

Example: Let I0 = {i1, i2, i3, i4, i5} = {1, 4, 8, 9, 11}, L = 15 and
σ = 2.

We adopt the notation:

• For easier tracking of repeated bits in LFSR states, we use the
notation sk → (k + 1).

• We consider only bits on tap positions on states which differ
for σ.



States i1 i2 i3 i4 i5

st1 s0 → 1 s3 → 4 s7 → 8 s8 → 9 s10 → 11

st2 s2 → 3 s5 → 6 s9 → 10 s10 → 11 s12 → 13

st3 s4 → 5 s7 → 8 s11 → 12 s12 → 13 s14 → 15

st4 s6 → 7 s9 → 10 s13 → 14 s14 → 15 s16 → 17

st5 s8 → 9 s11 → 12 s15 → 16 s16 → 17 s18 → 19

st6 s10 → 11 s13 → 14 s17 → 18 s18 → 19 s20 → 21

st7 s12 → 13 s15 → 16 s19 → 20 s20 → 21 s22 → 23

st8 s14 → 15 s17 → 18 s21 → 22 s22 → 23 s24 → 25

st9 s16 → 17 s19 → 20 s23 → 24 s24 → 25 s26 → 27

st10 s18 → 19 s21 → 22 s25 → 26 s26 → 27 s28 → 29



Questions: When will bit from tap position i3 repeat on i1? Will
ever repeat? If yes, in how many states?

States i1 i2 i3 i4 i5

st1 1 4 8 9 11

st2 3 6 10 11 13

st3 5 8 12 13 15

st4 7 10 14 15 17

st5 9 12 16 17 19

st6 11 14 18 19 21

st7 13 16 20 21 23

st8 15 18 22 23 25

st9 17 20 24 25 27

st10 19 22 26 27 29



We define the set of differences (from I0 = {1, 4, 8, 9, 11})
between the consecutive tap positions as

D = { dj | dj = ij+1 − ij , j = 1, 2, 3, 4} = {3, 4, 1, 2}.

Regarding the non-consecutive differences, we construct the
scheme of differences:

Row\Columns Col. 1 Col. 2 Col. 3 Col. 4
Row 1 d1 d2 d3 d4
Row 2 d1 + d2 d2 + d3 d3 + d4
Row 3 d1 + d2 + d3 d2 + d3 + d4
Row 4 d1 + d2 + d3 + d4



In our example, the scheme of differences is given as

Row\Columns Col. 1 Col. 2 Col. 3 Col. 4

Row 1 3 4 1 2

Row 2 7 5 3

Row 3 8 7

Row 4 10

Total sum of all repeated bits on all tap positions is given as

R =
n−1∑

i=1

(c −
1

σ

m∑

k=i

dk),

where σ |
∑m

k=i dk for some m ∈ N, i ≤ m ≤ n− 1.



Further analysing

From the previous formula, the complexity will increase if

1. We maximize
∑m

k=i dk , and

2. Avoid the divisibility by σ in the table of differences.

It turns out that:

• Maximizing
∑m

k=i dk means to distribute the taps over entire
LFSR.

• Regarding the divisibility, what about prime numbers?



Suboptimal algorithms

Which differences to choose:

• Prime numbers are still favourable (for many reasons).

• In many cases, we will have to choose the same differences.

• In general choose co-prime numbers. HOW ?

Permutation algorithm:

• Input: The set D and the numbers L, n and m.

• Output: The best ordering of the chosen differences, that is,
an ordered set D that maximizes the complexity of the attack.

Complexity of algorithm is O(K · n!), where K is a constant (large)



Open problem: Find an efficient algorithm, which returns the
best ordering of the set D without searching all permutations.

When #D is large, we give a modified algorithm - construct D
by parts:

• Choose a starting set (6-7 elements) in its best ordering (use
previous algorithm).

• Chose another few elements and find a permutation which fits
best to the starting set - maximized complexity.

• Measuring the quality: Lower value of optimal σ is a greater
indicator than the complexity.

• By putting the parts from right to left, continue the previous
steps until you obtain the set D.



Example: Let L = 160, n = 17 and m = 6.

• Starting set in its best ordering X = {5, 13, 7, 26, 11, 17}

• The second set (part) is Yp = {9, 1, 2, 23, 15} in its best
ordering which fits to the set X , i.e. we have

YpX = {9, 1, 2, 23, 15, 5, 13, 7, 26, 11, 17}

• The last part in its best ordering is Zp = {5, 11, 4, 3, 7} which
fits to the set YpX . Finally we get D = ZpYpX , i.e.

D = {5, 11, 4, 3, 7, 9, 1, 2, 23, 15, 5, 13, 7, 26, 11, 17}.



Since
∑

di = 159, we need to take the first tap to be 1, which
implies the last one to be L.

The set of tap positions is given by

I0 = {1, 6, 17, 21, 24, 31, 40, 41, 43, 66, 81, 86, 99, 106, 132, 143, 160}.

• Optimal step of the attack is σ = 1 with complexity
TComp. ≈ 286.97.

• Exhaustive search requires 280.

• In some cases we have a space to increase the number of
output bits m, and still preserve the security margins.



SOBER-t32: The tap positions are given by
I0 = {1, 4, 11, 16, 17}, and we have D = {3, 7, 5, 1}.

In GFSGA article, the complexity of the attack is

TD = (17× 32)3 × 2266.

According to the rules for choosing elements and permutation
algorithm, we take D∗ = {5, 2, 7, 2} and we have

TD∗ = (17× 32)3 × 2291.



SFINX: The set of differences is given as

D = {1, 5, 3, 10, 2, 23, 14, 16, 24, 7, 29, 27, 32, 34, 17, 11}.

Estimated complexity is TComp. = 2256 with R = 200 and σ = 2 as
an optimal step of the attack.

Modified algorithm may be used to improve the existing set D.

In its best orderings, we take the following parts:

• X = {29, 32, 17, 34, 27, 11}, Yp = {2, 23, 14, 16, 24, 7} and
Zp = {1, 5, 3, 10}.



• Estimated complexity is TComp. = 2257 with R = 167, thus
only a minor improvement has been achieved.

• We get the set D∗ = ZpYpX given as

D∗ = {1, 5, 3, 10, 2, 23, 14, 7, 16, 24, 29, 32, 17, 34, 27, 11},

with the optimal steps σ ∈ {1, 2} for the attack.



Thanks for your attention!


