Optimizing the placement of tap positions

Samir Hodžić
joint work with
Enes Pasalic, Samed Bajrić and Yongzhuang Wei

- Linear feedback shift register (LFSR).
- Nonlinear filtering function $F: G F(2)^{n} \rightarrow G F(2)^{m}$, whose inputs are taken from Tap positions of register.

Outputs of F are keystream blocks $\mathbf{y}^{\mathbf{t}}=\left(y_{1}^{t}, \ldots, y_{m}^{t}\right)$.

Attacks?

Different properties of Boolean function vs different attacks:

- Algebraic degree and resiliency vs Berlekamp-Massey synthesis algorithm and Correlation attacks.
- Algebraic immunity vs Algebraic attacks (Fast algebraic attacks, Probabilistic algebraic attacks).
- Filter state guessing attack (FSGA).
- and others...

What about tap positions, can we use these in an attack ?

Filter state guessing attack (FSGA)

- Observe several outputs $y^{t_{1}}, \ldots, y^{t_{c}}$ so that $c \times n>L$, where L is length of LFSR.
- Look at the preimage space

$$
S_{y}=\left\{x \in G F(2)^{n}: F(x)=y\right\}
$$

- Given any output $y^{t_{u}}$ there is 2^{n-m} possibilities for input $\left(x_{1}^{t_{u}}, \ldots, x_{n}^{t_{u}}\right)$, where $x_{i}^{t_{u}}=\sum_{j=0}^{L-1} a_{i, j}^{t_{u}} s_{j}$ (linear equation)
- Solve linear system and check whether the solution is correct.

Keystream:

Regarding the preimage spaces, it may happen that

$$
x_{j}^{t_{1}} \rightarrow x_{k}^{t_{2}}
$$

and preimage space reduces...
Design should prevent from finding many $x_{j}^{t_{1}} \rightarrow x_{k}^{t_{2}}, \quad x_{u}^{t_{1}} \rightarrow x_{v}^{t_{2}}$

Generalized Filter state guessing attack (GFSGA)

Unlike FSGA, GFSGA (Y. Wei et al. '11) utilizes the tap positions!

- The outputs $y^{t_{1}}, \ldots, y^{t_{c}}$ may give identical equations
- Distance between the consecutive outputs is σ.
- If $\mathcal{I}_{0}=\left\{i_{1}, i_{2}, \ldots, i_{n}\right\}$ is the set of tap positions, then

$$
\begin{gathered}
r_{i}=\# \mathcal{I}_{i}, \quad r_{i}-\text { number of repeated bits per state, } \\
\mathcal{I}_{i}=\mathcal{I}_{i-1} \cup\left\{\mathcal{I}_{0} \cap\left\{i_{1}+i \sigma, i_{2}+i \sigma, \ldots, i_{n}+i \sigma\right\}\right\}
\end{gathered}
$$

Satisfying $n c-R>L$, the total number of repeated equations R :

- If $c \leq k: \quad R=\sum_{i=1}^{c-1} r_{i}$
- If $c>k: \quad R=\sum_{i=1}^{k} r_{i}+(c-k-1) r_{k}$, where $k=\left\lfloor\frac{i_{n}-i_{1}}{\sigma}\right\rfloor$.

Complexities of the attack in both cases:

$$
\begin{aligned}
& T_{\text {Comp. }}^{c \leq k}=2^{(n-m)} \times 2^{\left(n-m-r_{1}\right)} \times \ldots \times 2^{\left(n-m-r_{(c-1)}\right)} \times L^{3} . \\
& T_{\text {Comp. }}^{c>k}=2^{(n-m)} \times \ldots \times 2^{\left(n-m-r_{k}\right)} \times 2^{\left(n-m-r_{k}\right) \times(c-k-1)} \times L^{3} .
\end{aligned}
$$

Problem: How to maximize $T_{\text {Comp }}$ for any σ ?

Designer/attacker rationales

In the position of the attacker:

- Search for optimal σ that gives minimal $T_{\text {Comp. }}$!

Q1: What about parameters R and c in the formula

$$
T_{\text {Comp. }}=2^{(n-m) c-R} \times L^{3} ?
$$

A1: For a given set of taps $\mathcal{I}_{0}=\left\{i_{1}, i_{2}, \ldots, i_{n}\right\}$, (not optimally taken?) the step σ which results in maximal R does not imply minimal complexity!

Our approach...

Can we calculate R in a different way? Can we get some new information?

Example: Let $\mathcal{I}_{0}=\left\{i_{1}, i_{2}, i_{3}, i_{4}, i_{5}\right\}=\{1,4,8,9,11\}, L=15$ and $\sigma=2$.

We adopt the notation:

- For easier tracking of repeated bits in LFSR states, we use the notation $s_{k} \rightarrow(k+1)$.
- We consider only bits on tap positions on states which differ for σ.

States	i_{1}	i_{2}	i_{3}	i_{4}	i_{5}
$\mathbf{s}^{t_{1}}$	$s_{0} \rightarrow 1$	$s_{3} \rightarrow 4$	$s_{7} \rightarrow 8$	$s_{8} \rightarrow 9$	$s_{10} \rightarrow 11$
$\mathbf{s}^{t_{2}}$	$s_{2} \rightarrow 3$	$s_{5} \rightarrow 6$	$s_{9} \rightarrow 10$	$s_{10} \rightarrow 11$	$s_{12} \rightarrow 13$
$\mathbf{s}^{t_{3}}$	$s_{4} \rightarrow 5$	$s_{7} \rightarrow 8$	$s_{11} \rightarrow 12$	$s_{12} \rightarrow 13$	$s_{14} \rightarrow 15$
$\mathbf{s}^{t_{4}}$	$s_{6} \rightarrow 7$	$s_{9} \rightarrow 10$	$s_{13} \rightarrow 14$	$s_{14} \rightarrow 15$	$s_{16} \rightarrow 17$
$\mathbf{s}^{t_{5}}$	$s_{8} \rightarrow 9$	$s_{11} \rightarrow 12$	$s_{15} \rightarrow 16$	$s_{16} \rightarrow 17$	$s_{18} \rightarrow 19$
$\mathbf{s}^{t_{6}}$	$s_{10} \rightarrow 11$	$s_{13} \rightarrow 14$	$s_{17} \rightarrow 18$	$s_{18} \rightarrow 19$	$s_{20} \rightarrow 21$
$\mathbf{s}^{t_{7}}$	$s_{12} \rightarrow 13$	$s_{15} \rightarrow 16$	$s_{19} \rightarrow 20$	$s_{20} \rightarrow 21$	$s_{22} \rightarrow 23$
$\mathbf{s}^{t_{8}}$	$s_{14} \rightarrow 15$	$s_{17} \rightarrow 18$	$s_{21} \rightarrow 22$	$s_{22} \rightarrow 23$	$s_{24} \rightarrow 25$
$\mathbf{s}^{t_{9}}$	$s_{16} \rightarrow 17$	$s_{19} \rightarrow 20$	$s_{23} \rightarrow 24$	$s_{24} \rightarrow 25$	$s_{26} \rightarrow 27$
$\mathbf{s}^{t_{10}}$	$s_{18} \rightarrow 19$	$s_{21} \rightarrow 22$	$s_{25} \rightarrow 26$	$s_{26} \rightarrow 27$	$s_{28} \rightarrow 29$

Questions: When will bit from tap position i_{3} repeat on i_{1} ? Will ever repeat? If yes, in how many states?

States	i_{1}	i_{2}	i_{3}	i_{4}	i_{5}
$\mathbf{s}^{t_{1}}$	1	4	8	9	11
$\mathbf{s}^{t_{2}}$	3	6	10	11	13
$\mathbf{s}^{t_{3}}$	5	8	12	13	15
$\mathbf{s}^{t_{4}}$	7	10	14	15	17
$\mathbf{s}^{t_{5}}$	9	12	16	17	19
$\mathbf{s}^{t_{6}}$	11	14	18	19	21
$\mathbf{s}^{t_{7}}$	13	16	20	21	23
$\mathbf{s}^{t_{8}}$	15	18	22	23	25
$\mathbf{s}^{t_{9}}$	17	20	24	25	27
$\mathbf{s}^{t_{10}}$	19	22	26	27	29

We define the set of differences (from $\mathcal{I}_{0}=\{1,4,8,9,11\}$) between the consecutive tap positions as

$$
D=\left\{d_{j} \mid d_{j}=i_{j+1}-i_{j}, j=1,2,3,4\right\}=\{3,4,1,2\}
$$

Regarding the non-consecutive differences, we construct the scheme of differences:

Row \backslash Columns	Col. 1	Col. 2	Col. 3	Col. 4
Row 1	d_{1}	d_{2}	d_{3}	d_{4}
Row 2	$d_{1}+d_{2}$	$d_{2}+d_{3}$	$d_{3}+d_{4}$	
Row 3	$d_{1}+d_{2}+d_{3}$	$d_{2}+d_{3}+d_{4}$		
Row 4	$d_{1}+d_{2}+d_{3}+d_{4}$			

In our example, the scheme of differences is given as

Row \backslash Columns	Col. 1	Col. 2	Col. 3	Col. 4
Row 1	3	4	1	2
Row 2	7	5	3	
Row 3	8	7		
Row 4	10			

Total sum of all repeated bits on all tap positions is given as

$$
R=\sum_{i=1}^{n-1}\left(c-\frac{1}{\sigma} \sum_{k=i}^{m} d_{k}\right)
$$

where $\sigma \mid \sum_{k=i}^{m} d_{k}$ for some $m \in \mathbb{N}, i \leq m \leq n-1$.

Further analysing

From the previous formula, the complexity will increase if

1. We maximize $\sum_{k=i}^{m} d_{k}$, and
2. Avoid the divisibility by σ in the table of differences.

It turns out that:

- Maximizing $\sum_{k=i}^{m} d_{k}$ means to distribute the taps over entire LFSR.
- Regarding the divisibility, what about prime numbers?

Suboptimal algorithms

Which differences to choose:

- Prime numbers are still favourable (for many reasons).
- In many cases, we will have to choose the same differences.
- In general choose co-prime numbers. HOW ?

Permutation algorithm:

- Input: The set D and the numbers L, n and m.
- Output: The best ordering of the chosen differences, that is, an ordered set D that maximizes the complexity of the attack.

Complexity of algorithm is $O(K \cdot n!)$, where K is a constant (large)

Open problem: Find an efficient algorithm, which returns the best ordering of the set D without searching all permutations.

When \#D is large, we give a modified algorithm - construct D by parts:

- Choose a starting set (6-7 elements) in its best ordering (use previous algorithm).
- Chose another few elements and find a permutation which fits best to the starting set - maximized complexity.
- Measuring the quality: Lower value of optimal σ is a greater indicator than the complexity.
- By putting the parts from right to left, continue the previous steps until you obtain the set D.

Example: Let $L=160, n=17$ and $m=6$.

- Starting set in its best ordering $X=\{5,13,7,26,11,17\}$
- The second set (part) is $Y_{p}=\{9,1,2,23,15\}$ in its best ordering which fits to the set X, i.e. we have

$$
Y_{p} X=\{9,1,2,23,15,5,13,7,26,11,17\}
$$

- The last part in its best ordering is $Z_{p}=\{5,11,4,3,7\}$ which fits to the set $Y_{p} X$. Finally we get $D=Z_{p} Y_{p} X$, i.e.

$$
D=\{5,11,4,3,7,9,1,2,23,15,5,13,7,26,11,17\} .
$$

Since $\sum d_{i}=159$, we need to take the first tap to be 1 , which implies the last one to be L.

The set of tap positions is given by
$\mathcal{I}_{0}=\{1,6,17,21,24,31,40,41,43,66,81,86,99,106,132,143,160\}$.

- Optimal step of the attack is $\sigma=1$ with complexity $T_{\text {Comp. }} \approx 2^{86.97}$.
- Exhaustive search requires 2^{80}.
- In some cases we have a space to increase the number of output bits m, and still preserve the security margins.

SOBER-t32: The tap positions are given by $\mathcal{I}_{0}=\{1,4,11,16,17\}$, and we have $D=\{3,7,5,1\}$.

In GFSGA article, the complexity of the attack is

$$
T_{D}=(17 \times 32)^{3} \times 2^{266}
$$

According to the rules for choosing elements and permutation algorithm, we take $D^{*}=\{5,2,7,2\}$ and we have

$$
T_{D^{*}}=(17 \times 32)^{3} \times 2^{291}
$$

SFINX: The set of differences is given as

$$
D=\{1,5,3,10,2,23,14,16,24,7,29,27,32,34,17,11\} .
$$

Estimated complexity is $T_{\text {Comp. }}=2^{256}$ with $R=200$ and $\sigma=2$ as an optimal step of the attack.

Modified algorithm may be used to improve the existing set D.

In its best orderings, we take the following parts:

- $X=\{29,32,17,34,27,11\}, Y_{p}=\{2,23,14,16,24,7\}$ and $Z_{p}=\{1,5,3,10\}$.
- Estimated complexity is $T_{\text {Comp. }}=2^{257}$ with $R=167$, thus only a minor improvement has been achieved.
- We get the set $D^{*}=Z_{p} Y_{p} X$ given as

$$
D^{*}=\{1,5,3,10,2,23,14,7,16,24,29,32,17,34,27,11\}
$$

with the optimal steps $\sigma \in\{1,2\}$ for the attack.

Thanks for your attention!

