Solving Systems of Boolean Polynomials Using Binary Decision Diagrams

Oleksandr Kazymyrov¹ Håvard Raddum²

¹ University of Bergen ² Simula Research Laboratories Norway

Solving equation systems

- Solving (non-linear) system of equations is NP-hard in general
- Several solving algorithms exist, which is the best?
- Equations may be represented as
 - ◆ Boolean polynomials
 - ◆ SAT formulas
 - ◆ MRHS
 - → Binary Decision Diagrams (BDDs)

Binary Decision Diagrams (in this talk)

- Directed acyclic graph starting in one source node and ending in one sink node
- Drawn top to bottom, nodes in horizontal levels
- No edges between nodes on the same level
- At most two out-going edges from each node, called 0-edge and 1-edge
- Nodes on same level associated to some linear combination of variables

Constructing BDD systems

Constructing BDDs

- Easy construction of BDD from any Boolean polynomial
- May also construct BDD directly from non-linear components (S-boxes, mod 2ⁿ, bitwise AND ...)

Boolean Equation to BDD

- $f(I_1(x),...,I_n(x)) = 1$
- Assign f to source node, 1 to sink node and associate I₁(x) to level
 1 (top level)
- For i=2...n
 - ◆ For each node A on level i-1 (ass. to func. g≠0)
 - make two nodes on level i, connected to A by 0-edge and 1edge
 - assign $g|_{i-1(x)=0}$ and $g|_{i-1(x)=1}$ ($\neq 0$) to new nodes on level i
 - ◆ Associate I_i(x) to level i

 $\underline{f(|1,|2,|3,|4) = |1|2|3+|1|2|4+|2|4+|2+|3|=1}$

f(|1,|2,|3,|4) = |1|2|3+|1|2|4+|2|4+|2+|3 = 1

1

 $\frac{1}{|2|_3+|1|_2|_4+|2|_4+|2+|3|_5}$

 $f(|_1,|_2,|_3,|_4) = |_1|_2|_3 + |_1|_2|_4 + |_2|_4 + |_2 + |_3 = 1$

Constructing system

- Build one BDD for each f_i (or non-linear component)
- Set of BDDs = representation of equation system (cryptographic primitive)

X	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
у	5	С	8	F	9	7	2	В	6	А	0	D	Е	4	3	1

X	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
у	5	С	8	F	9	7	2	В	6	А	0	D	Е	4	3	1

X	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
у	5	С	8	F	9	7	2	В	6	А	0	D	Е	4	3	1

X	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
у	5	С	8	F	9	7	2	В	6	А	0	D	Е	4	3	1

Solving BDD systems

Paths = valid assignments

- Set of paths from source to sink nodes in BDD describes constraint of equation
- Selecting a path assigns values to linear combinations
- The edge out from a node on a level gives value to linear combination associated with that level
- One path gives right-hand side linear system

$$x12 + x20 + x28 + x36 + x44 + x125 + x128 = 1$$

 $x13 + x21 + x29 + x37 + x45 + x126 + x129 = 1$
 $x14 + x22 + x30 + x38 + x46 + x124 + x127 + x130 = 0$
 $x15 + x23 + x31 + x39 + x47 + x124 + x131 = 1$
 $x49 + x51 + x52 + x54 = 0$
 $x48 + x50 + x52 + x53 + x55 = 1$
 $x48 + x49 + x51 + x52 + x53 + x54 = 0$
 $x48 + x50 + x51 + x53 + x55 = 1$

Select a path from each BDD

- Select a path from each BDD
- Collect linear systems from each BDD into one big linear system

- Select a path from each BDD
- Collect linear systems from each BDD into one big linear system
- Solve big linear system

- Select a path from each BDD
- Collect linear systems from each BDD into one big linear system
- Solve big linear system
- Solution found :-)

 Big linear system is overdefined, with lots of dependencies among linear combinations

- Big linear system is overdefined, with lots of dependencies among linear combinations
- Selected paths will, in all likelihood, lead to an inconsistent system

- Big linear system is overdefined, with lots of dependencies among linear combinations
- Selected paths will, in all likelihood, lead to an inconsistent system
- No solution :-(

- We may manipulate a BDD to:
 - ◆ Reduce the BDD (remove redundant nodes)
 - Swap the linear combinations of two adjacent levels
 - Add (xor) the linear combinations of two adjacent levels

BDD Operations

- BDD reduction runs in polynomial time
- Swapping/adding levels are local operations, only affecting two levels involved
- May swap/add repeatedly to perform Gaussian elimination on linear combinations of BDD

Joining BDDs

- Two or more BDDs may be joined into one BDD very easily
 - ◆ To join two BDDs, replace the sink node of one with the source node of the other

Three joined BDDs

$$x1 + x4$$

$$x3 + x7$$

$$x3 + x4 + x6$$

$$x1 + x3 + x6$$

$$x5 + x7$$

$$x1 + x4$$

$$x3 + x7$$

$$x3 + x4 + x6$$

$$x1 + x3 + x6$$

$$x5 + x7$$

$$x3 + x7$$

$$x1 + x4$$

$$x3 + x4 + x6$$

$$x1 + x3 + x6$$

$$x5 + x7$$

$$x3 + x7$$

$$x1 + x4$$

$$x1 + x3 + x6$$

$$x1 + x3 + x6$$

$$x5 + x7$$

$$x3 + x7$$

$$x1 + x4$$

Operations on a BDD

$$x1 + x3 + x6$$

 O

$$x5 + x7$$

x2

$$x3 + x7$$

$$x1 + x4$$

$$x1 + x3 + x6$$

0

$$x5 + x7$$

Level with 0-vector

- Level associated with 0-vector = 0-level
- Selecting 1-edge out from 0-level gives «0=1» assignment
- Remove all 1-edges out from nodes on 0-level

x2

$$x3 + x7$$

$$x1 + x4$$

$$x1 + x3 + x6$$

0

$$x5 + x7$$

x2

$$x3 + x7$$

$$x1 + x4$$

$$x1 + x3 + x6$$

()

$$x5 + x7$$

x2

$$x3 + x7$$

$$x1 + x4$$

$$x1 + x3 + x6$$

$$x5 + x7$$

x2

$$x3 + x7$$

$$x1 + x4$$

$$x1 + x3 + x6$$

$$x5 + x7$$

- While more than 1 BDD in system
 - ◆ Join some BDDs (in some order) creating a BDD with linear dependencies
 - Absorb linear dependencies

- While more than 1 BDD in system
 - ◆ Join some BDDs (in some order) creating a BDD with linear dependencies
 - Absorb linear dependencies
- Any remaining path in final BDD gives right-hand side leading to consistent linear system

- While more than 1 BDD in system
 - ◆ Join some BDDs (in some order) creating a BDD with linear dependencies
 - Absorb linear dependencies
- Any remaining path in final BDD gives right-hand side leading to consistent linear system
- Solve linear system

Complexity

- Number of nodes on one level may (worst case) double when swapping or adding levels
- Absorbing one linear dependency may double the size of BDD
- In practice: very far from worst-case behavior

Practical results and examples

 2007: an equation system for 6-round DES solved with MiniSat in 68 seconds (Courtois & Bard)

- 2007: an equation system for 6-round DES solved with MiniSat in 68 seconds (Courtois & Bard)
- But... necessary to fix 20 bits of the key to correct values

- 2007: an equation system for 6-round DES solved with MiniSat in 68 seconds (Courtois & Bard)
- But... necessary to fix 20 bits of the key to correct values
- BDD system for 6-round DES solved in the same time without guessing (8 chosen plaintexts)

 There is no previous algebraic attacks on 10round version (except CryptoMiniSAT)

- There is no previous algebraic attacks on 10round version (except CryptoMiniSAT)
- The best previous attack is only for 2 rounds

- There is no previous algebraic attacks on 10round version (except CryptoMiniSAT)
- The best previous attack is only for 2 rounds
- BDD approach allows to break full version of MiniAES using only 1 known plaintext

Determining EA-equivalence

Two vectorial Boolean functions F, G: GF(2ⁿ) → GF(2ⁿ)
are EA-equivalent if for all x

$$F(x) = M_1 \cdot G(M_2 \cdot x + V_2) + M_3 \cdot x + V_1$$

- Mi are nxn matrices and Vj are n-bit vectors, M1 and M2 are invertible
- May create equation system describing EAequivalence, entries to M_i and V_j are variables (number of vars. is 3n² + 2n)

Finding EA-equivalence

A few experiments for n=4 and n=5

Instance	n	Number of solutions	Time (sec)		
			BDD	Gröbner basis	CryptoMiniSat
1	4	2	2	2	2
2	4	60	2	-	2
3	4	2	2	2	2
4	5	1	2	2	>2
5	5	155	2	-	>2

^{*} Not finished after 78 hours

Conclusions

- New approaches to algebraic attacks development
- The BDD approach allows to reduce complexity of algebraic attack on DES by 2²⁰
- Practical algebraic attack on 10-round MiniAES was presented for the first time
- In some cases the BDD method is more universal and shows the best results of all known methods