### Nearest Planes in Practice

Christian Bischof<sup>1</sup>, Johannes Buchmann<sup>1</sup>, **Özgür Dagdelen**<sup>1</sup>, Robert Fitzpatrick<sup>2</sup>, Florian Göpfert<sup>1</sup>, and Artur Mariano<sup>1</sup>

<sup>1</sup>Technische Universität Darmstadt

<sup>2</sup>Academia Sinica, Taipei

October 17th, 2014

### Lattices

• A lattice is a discrete additive subgroup of  $\mathbb{R}^m$ 



< (T) > <

3

### Lattices



### Lattices

- A lattice is a discrete additive subgroup of  $\mathbb{R}^m$
- A lattice can always be represented by a basis  $B = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ via  $\mathbb{L} = \left\{ \sum_{i=1}^n \alpha_i \mathbf{v}_i \mid \alpha_i \in \mathbb{Z} \right\}$
- The basis is not unique



0

• Easy problem: solving a linear equation (Gauß)



Given A and b, find s

3

→ Ξ →

< 4 →

• Easy problem: solving a linear equation (Gauß)

$$\mathbf{A} \cdot \mathbf{s} = \mathbf{b} \mod q$$

- ► Given **A** and **b**, find **s**
- Hard problem: solving a linear equation with noise (Regev)

$$\mathbf{A} \cdot \mathbf{s} + \mathbf{e} = \mathbf{b} \mod q$$

▶ Given **A** and **b**, find **s** and / or **e** 

< 🗇 🕨 < 🖃 🕨

3

• Easy problem: solving a linear equation (Gauß)

$$\mathbf{A} \cdot \mathbf{s} = \mathbf{b} \mod q$$

• Given **A** and **b**, is there an **s** satisfying As = b?

• Hard problem: solving a linear equation with noise (Regev)

$$\mathbf{A} \cdot \mathbf{s} + \mathbf{e} = \mathbf{b} \mod q$$

 $\blacktriangleright$  Given  $\bm{A}$  and  $\bm{b},$  is there an  $\bm{s}$  satisfying  $\bm{A}\bm{s}\approx\bm{b}$ 

• Easy problem: solving a linear equation (Gauß)

$$\mathbf{A} \cdot \mathbf{s} = \mathbf{b} \mod q$$

• Given **A** and **b**, is there an **s** satisfying As = b?

• Hard problem: solving a linear equation with noise (Regev)

$$\mathbf{A} \cdot \mathbf{s} + \mathbf{e} = \mathbf{b} \mod q$$

- $\blacktriangleright\,$  Given A and b, is there an s satisfying  $As\approx b$
- Creating instance: **A** uniformly random in  $\mathbb{Z}_q^{m \times n}$ , **s**, **e** small





Lattice



$$\mathbb{L} = \left\{ \mathbf{v} \in \mathbb{Z}^m \mid \exists \mathbf{x} \in \mathbb{Z}^n : \mathbf{A}\mathbf{x} = \mathbf{v} \mod q \right\}$$

イロト イヨト イヨト イヨト

Özgür Dagdelen (TU Darmstadt)

Nearest Planes in Practice

æ

# LWE and Lattices



< 47 ▶ <

- 32

### LWE and Lattices



A 🖓

3

#### Scheme instances



#### Problem instances



< 67 ▶



Özgür Dagdelen (TU Darmstadt)

Nearest Planes in Practice

October 17th, 2014 5 / 1

-

< 17 ▶



Özgür Dagdelen (TU Darmstadt)

5/1 October 17th, 2014

-

< 17 ▶



Özgür Dagdelen (TU Darmstadt)

∃ → 5/1 October 17th, 2014

< (T) > <

### Worst case Hardness

#### Scheme instances



#### Problem instances



\_\_\_ ▶

### Worst case Hardness



Özgür Dagdelen (TU Darmstadt)

Nearest Planes in Practice

∃ →

▲ @ ▶ < ∃ ▶</p>

- 1: **if** k < 0 **then**
- 2: return  $\mathbf{0} \in \mathbb{Z}^m$
- 3: end if
- 4: Set t to be the orthogonal projection of b on span(v<sub>0</sub>,...,v<sub>k</sub>)
- 5: Set  $\mathbf{t}' = \mathbf{t} \alpha \mathbf{v}_k$ ,  $(\alpha \in \mathbb{Z})$  such that  $\mathbf{t}'$  is as close as possible to span $(\mathbf{v}_0, \dots, \mathbf{v}_{k-1})$

6: return  $\alpha \mathbf{v}_k + \text{NearestPlane}(\mathbf{t}')$ 













1: if k < 0 then return  $\mathbf{0} \in \mathbb{Z}^m$ 2: 3: end if 4: Set t to be the orthogonal projection of **b** on  $span(\mathbf{v}_0,\ldots,\mathbf{v}_k)$ 5: Set  $\mathbf{t}' = \mathbf{t} - \alpha \mathbf{v}_k$ , ( $\alpha \in \mathbb{Z}$ ) such that  $\mathbf{t}'$  is as close as possible to span( $\mathbf{v}_0, \ldots, \mathbf{v}_{k-1}$ ) 6: return  $\alpha \mathbf{v}_k$  + NearestPlane( $\mathbf{t}'$ )



### Nearest Planes: Pseudocode

- 1: **if** k < 0 **then**
- 2: return  $\mathbf{0} \in \mathbb{Z}^m$
- 3: end if
- 4: Set **t** to be the orthogonal projection of **b** on span $(\mathbf{v}_0, \dots, \mathbf{v}_k)$
- 5: Set  $\mathbf{t}'_i = \mathbf{t} \alpha_i \mathbf{v}_k$ , where  $\alpha_i \in \mathbb{Z}$  are chosen such that  $\mathbf{t}'_i$  are distinct vectors as close as possible to span $(\mathbf{v}_0, \dots, \mathbf{v}_{k-1})$
- 6: return  $\bigcup \{ \alpha_i \mathbf{v}_k + \text{Nearest Planes}(\mathbf{t}'_i) \}$

### Nearest Planes: Parallelization



(日) (同) (三) (三)

э

# Result

| Enumerations | 2 <sup>12</sup> |       | 2 <sup>15</sup> |       | 2 <sup>18</sup> |       |
|--------------|-----------------|-------|-----------------|-------|-----------------|-------|
| Threads      | R               | S     | R               | S     | R               | S     |
| 1            | 7.04            | 1.00  | 56.03           | 1.00  | 446.93          | 1.00  |
| 2            | 3.61            | 1.95  | 28.54           | 1.96  | 227.43          | 1.97  |
| 4            | 1.87            | 3.77  | 14.88           | 3.77  | 117.18          | 3.81  |
| 8            | 1.01            | 6.99  | 8.04            | 6.97  | 63.81           | 7.00  |
| 16           | 0.66            | 10.71 | 5.36            | 10.45 | 42.01           | 10.64 |

Table: Runtime in seconds (R) and speed-up (S) for parallel Nearest Planes

æ

イロト イヨト イヨト イヨト

# Conclusion

"This 2<sup>16</sup> factor is somewhat arbitrary, but seems to be a reasonable estimate on the number of NearestPlanes enumerations that can be performed per second, especially with parallelism."

- Lindner and Peikert, 2011

#### Our Result

It is probably possible to perform more than  $2^{16}$  operations using less than 1000 cores. New security estimations for LWE should take this into considerations.

< 回 ト < 三 ト < 三 ト

# QUESTIONS?

3

<ロ> (日) (日) (日) (日) (日)