Nearest Planes in Practice

Christian Bischof ${ }^{1}$, Johannes Buchmann ${ }^{1}$, Özgür Dagdelen ${ }^{1}$, Robert Fitzpatrick ${ }^{2}$, Florian Göpfert ${ }^{1}$, and Artur Mariano ${ }^{1}$

${ }^{1}$ Technische Universität Darmstadt

${ }^{2}$ Academia Sinica, Taipei

October 17th, 2014

Lattices

- A lattice is a discrete additive subgroup of \mathbb{R}^{m}

Lattices

- A lattice is a discrete additive subgroup of \mathbb{R}^{m}
- A lattice can always be represented by a basis $B=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ via $\mathbb{L}=\left\{\sum_{i=1}^{n} \alpha_{i} \mathbf{v}_{i} \mid \alpha_{i} \in \mathbb{Z}\right\}$

Lattices

- A lattice is a discrete additive subgroup of \mathbb{R}^{m}
- A lattice can always be represented by a basis $B=\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ via $\mathbb{L}=\left\{\sum_{i=1}^{n} \alpha_{i} \mathbf{v}_{i} \mid \alpha_{i} \in \mathbb{Z}\right\}$
- The basis is not unique

Learning With Errors

- Easy problem: solving a linear equation (Gauß)

- Given \mathbf{A} and \mathbf{b}, find \mathbf{s}

Learning With Errors

- Easy problem: solving a linear equation (Gauß)

- Given \mathbf{A} and \mathbf{b}, find \mathbf{s}
- Hard problem: solving a linear equation with noise (Regev)

- Given \mathbf{A} and \mathbf{b}, find \mathbf{s} and / or \mathbf{e}

Learning With Errors

- Easy problem: solving a linear equation (Gauß)

- Given \mathbf{A} and \mathbf{b}, is there an \mathbf{s} satisfying $\mathbf{A s}=\mathbf{b}$?
- Hard problem: solving a linear equation with noise (Regev)

- Given \mathbf{A} and \mathbf{b}, is there an s satisfying $\mathbf{A s} \approx \mathbf{b}$

Learning With Errors

- Easy problem: solving a linear equation (Gauß)

- Given \mathbf{A} and \mathbf{b}, is there an \mathbf{s} satisfying $\mathbf{A s}=\mathbf{b}$?
- Hard problem: solving a linear equation with noise (Regev)

- Given \mathbf{A} and \mathbf{b}, is there an \mathbf{s} satisfying $\mathbf{A s} \approx \mathbf{b}$
- Creating instance: A uniformly random in $\mathbb{Z}_{q}^{m \times n}, \mathbf{s}, \mathbf{e}$ small

LWE and Lattices

LWE

Lattice

$$
\mathbb{L}=\left\{\mathbf{v} \in \mathbb{Z}^{m} \mid \exists \mathbf{x} \in \mathbb{Z}^{n}: \mathbf{A} \mathbf{x}=\mathbf{v} \bmod q\right\}
$$

LWE and Lattices

Lattice

LWE and Lattices

LWE

Average case Hardness

Scheme instances

Problem instances

Average case Hardness

Scheme instances
Problem instances

Average case Hardness

Scheme instances
Problem instances

Average case Hardness

Scheme instances
Problem instances

Worst case Hardness

Scheme instances

Problem instances

Worst case Hardness

Scheme instances
Problem instances

Nearest Plane

1: if $k<0$ then
2: return $\mathbf{0} \in \mathbb{Z}^{m}$
3: end if
4: Set \mathbf{t} to be the orthogonal projection of \mathbf{b} on $\operatorname{span}\left(\mathbf{v}_{0}, \ldots, \mathbf{v}_{k}\right)$
5: Set $\mathbf{t}^{\prime}=\mathbf{t}-\alpha \mathbf{v}_{k},(\alpha \in \mathbb{Z})$ such that \mathbf{t}^{\prime} is as close as possible to $\operatorname{span}\left(\mathbf{v}_{0}, \ldots, \mathbf{v}_{k-1}\right)$
6: return $\alpha \mathbf{v}_{k}+$ NearestPlane $\left(\mathbf{t}^{\prime}\right)$

Nearest Plane

1: if $k<0$ then
2: \quad return $\mathbf{0} \in \mathbb{Z}^{m}$
3: end if
4: Set \mathbf{t} to be the orthogonal projection of \mathbf{b} on $\operatorname{span}\left(\mathbf{v}_{0}, \ldots, \mathbf{v}_{k}\right)$
5: Set $\mathbf{t}^{\prime}=\mathbf{t}-\alpha \mathbf{v}_{k},(\alpha \in \mathbb{Z})$ such that \mathbf{t}^{\prime} is as close as possible to $\operatorname{span}\left(\mathbf{v}_{0}, \ldots, \mathbf{v}_{k-1}\right)$
6: return $\alpha \mathbf{v}_{k}+$ NearestPlane $\left(\mathbf{t}^{\prime}\right)$

Nearest Plane

1: if $k<0$ then
2: \quad return $\mathbf{0} \in \mathbb{Z}^{m}$
3: end if
4: Set \mathbf{t} to be the orthogonal projection of \mathbf{b} on $\operatorname{span}\left(\mathbf{v}_{0}, \ldots, \mathbf{v}_{k}\right)$
5: Set $\mathbf{t}^{\prime}=\mathbf{t}-\alpha \mathbf{v}_{k},(\alpha \in \mathbb{Z})$ such that \mathbf{t}^{\prime} is as close as possible to $\operatorname{span}\left(\mathbf{v}_{0}, \ldots, \mathbf{v}_{k-1}\right)$
6: return $\alpha \mathbf{v}_{k}+$ NearestPlane($\left.\mathbf{t}^{\prime}\right) \quad$ 。

Nearest Plane

1: if $k<0$ then
2: \quad return $\mathbf{0} \in \mathbb{Z}^{m}$
3: end if
4: Set \mathbf{t} to be the orthogonal projection of \mathbf{b} on $\operatorname{span}\left(\mathbf{v}_{0}, \ldots, \mathbf{v}_{k}\right)$
5: Set $\mathbf{t}^{\prime}=\mathbf{t}-\alpha \mathbf{v}_{k},(\alpha \in \mathbb{Z})$ such that \mathbf{t}^{\prime} is as close as possible to $\operatorname{span}\left(\mathbf{v}_{0}, \ldots, \mathbf{v}_{k-1}\right)$
6: return $\alpha \mathbf{v}_{k}+$ NearestPlane($\left.\mathbf{t}^{\prime}\right)$ 。

Nearest Plane

1: if $k<0$ then
2: return $\mathbf{0} \in \mathbb{Z}^{m}$
3: end if
4: Set \mathbf{t} to be the orthogonal projection of \mathbf{b} on $\operatorname{span}\left(\mathbf{v}_{0}, \ldots, \mathbf{v}_{k}\right)$
5: Set $\mathbf{t}^{\prime}=\mathbf{t}-\alpha \mathbf{v}_{k},(\alpha \in \mathbb{Z})$ such that \mathbf{t}^{\prime} is as close as possible to $\operatorname{span}\left(\mathbf{v}_{0}, \ldots, \mathbf{v}_{k-1}\right)$
6: return $\alpha \mathbf{v}_{k}+$ NearestPlane $\left(\mathbf{t}^{\prime}\right)$

Nearest Plane

1: if $k<0$ then
2: \quad return $\mathbf{0} \in \mathbb{Z}^{m}$
3: end if
4: Set \mathbf{t} to be the orthogonal projection of \mathbf{b} on $\operatorname{span}\left(\mathbf{v}_{0}, \ldots, \mathbf{v}_{k}\right)$
5: Set $\mathbf{t}^{\prime}=\mathbf{t}-\alpha \mathbf{v}_{k},(\alpha \in \mathbb{Z})$ such that \mathbf{t}^{\prime} is as close as possible
$\frac{\text { to } \operatorname{span}\left(\mathbf{v}_{0}, \ldots, \mathbf{v}_{k-1}\right)}{\text { 6: return } \alpha \mathbf{v}_{k}+\text { NearestPlane }\left(\mathbf{t}^{\prime}\right)}$ 。

Nearest Plane

1: if $k<0$ then

2: \quad return $\mathbf{0} \in \mathbb{Z}^{m}$
3: end if
4: Set \mathbf{t} to be the orthogonal projection of \mathbf{b} on $\operatorname{span}\left(\mathbf{v}_{0}, \ldots, \mathbf{v}_{k}\right)$
5: Set $\mathbf{t}^{\prime}=\mathbf{t}-\alpha \mathbf{v}_{k},(\alpha \in \mathbb{Z})$ such that \mathbf{t}^{\prime} is as close as possible to $\operatorname{span}\left(\mathbf{v}_{0}, \ldots, \mathbf{v}_{k-1}\right)$
6: return $\alpha \mathbf{v}_{k}+$ NearestPlane $\left(\mathbf{t}^{\prime}\right)$

Nearest Planes: Pseudocode

1: if $k<0$ then
2: return $\mathbf{0} \in \mathbb{Z}^{m}$
3: end if
4: Set \mathbf{t} to be the orthogonal projection of \mathbf{b} on $\operatorname{span}\left(\mathbf{v}_{0}, \ldots, \mathbf{v}_{k}\right)$
5: Set $\mathbf{t}_{i}^{\prime}=\mathbf{t}-\alpha_{i} \mathbf{v}_{k}$, where $\alpha_{i} \in \mathbb{Z}$ are chosen such that \mathbf{t}_{i}^{\prime} are distinct vectors as close as possible to $\operatorname{span}\left(\mathbf{v}_{0}, \ldots, \mathbf{v}_{k-1}\right)$
6: return $\bigcup\left\{\alpha_{i} \mathbf{v}_{k}+\right.$ Nearest Planes $\left.\left(\mathbf{t}_{i}^{\prime}\right)\right\}$

Nearest Planes: Parallelization

Result

Enumerations	2^{12}		2^{15}		2^{18}	
Threads	R	S	R	S	R	S
1	7.04	1.00	56.03	1.00	446.93	1.00
2	3.61	1.95	28.54	1.96	227.43	1.97
4	1.87	3.77	14.88	3.77	117.18	3.81
8	1.01	6.99	8.04	6.97	63.81	7.00
16	0.66	10.71	5.36	10.45	42.01	10.64

Table: Runtime in seconds (R) and speed-up (S) for parallel Nearest Planes

Conclusion

"This 2^{16} factor is somewhat arbitrary, but seems to be a reasonable estimate on the number of NearestPlanes enumerations that can be performed per second, especially with parallelism."

- Lindner and Peikert, 2011

Our Result

It is probably possible to perform more than 2^{16} operations using less than 1000 cores. New security estimations for LWE should take this into considerations.

Questions?

